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In this paper, the work of Zakharov [J. Appl. Mech. Tech. Phys., Engl. Transl. 2, 190 (1968)] giv-
ing the canonical-Hamiltonian formulation for irrotational ideal flow with a free surface is generalized
to the case in which the fluid interior contains isolated vortices. In particular, for two-dimensional
flow the case of point vortices in the fluid interior is considered and for three-dimensional flow the
case of vortex filaments in the interior is considered. Canonical variables are obtained explicitly for
each of these cases. In the idealization of infinitely thin filaments, one has the usual problem of an
infinite normal velocity being induced on a curved filament, so that a finite thickness must be given
to each filament. This procedure is handled naturally by the Hamiltonian formulation given.

PACS number(s): 03.40.Gc, 47.15.Ki, 47.32.Cc, 47.15.Hg

I. INTRODUCTION

In this paper we develop a canonical-Hamiltonian the-
ory of fluid flows involving a free surface and either point
vortices in two dimensions, or vortex filaments in three
dimensions. Both of these vortical flows have been well
studied in fluids with fixed boundaries, and have provided
considerable insight into lows with nonsingular vorticity.
Although the equations of motion are well known, the
free surface adds considerable complexity and approxi-
mations have to be made in order to study the problem.

Hamiltonian methods often have advantages when ap-
proximations must be made. There are several reasons
for this, one of which is that conservation laws are eas-
ier to respect. Another important advantage is the fact
that there is an underlying variational principle which is
extremely useful for problems in which there are space-
and/or time-scale separations, as discussed extensively
by Whitham [1]. We also mention that it is easier to
keep track of orders of perturbation theory in a Hamil-
tonian framework. Previous calculations using Hamilto-
nian methods for surface waves in the absence of vorticity
have demonstrated the usefulness of the Hamiltonian for-
mulation [2-10]. It is with the expectation that similar
benefits will arise for simple vorticity configurations that
we extend the Hamiltonian formalism for surface waves to
include point vortices and vortex filaments in the interior.
Additionally, the Hamiltonian equations of motion that
we obtain for vortex filaments are of a mixed Lagrangian-
Eulerian type which is different from the usual formula-
tions. It is at present unknown whether this formulation
would offer an advantage in numerical computations, but
there is at least a possibility of improvement.

This paper will be devoted to the development of the
formalism. In subsequent publications we will calculate
the interaction between point vortices and surface waves
for some typical examples. We will also consider 3d vor-
tex filaments in the local induction approximation [11],
interacting with surface waves. This provides an inter-
esting model of the trailing vortices in a ship wake.
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In the Introduction we review the Hamiltonian forms of
the free surface motion and that of point-vortex motion
separately. In the next section we derive the canonical-
Hamiltonian form of the coupled equations for point vor-
tices and a free surface in two dimensions. Although the
two-dimensional point vortex has been studied in Hamil-
tonian form for a long time, there has been no com-
parable formulation of vortex filaments in a canonical-
Hamiltonian theory. In Sec. III we derive the canonical-
Hamiltonian form for vortex filaments; this provides a
description of vortex filament motion different from the
usual ones. It is of a mixed Lagrangian-Eulerian form
and potentially could have useful computational applica-
tions. We then combine filament motion with free surface
motion. Next we show how a Hamiltonian form of the
local induction approximation [11] can be derived from
our formulation, and more generally how the Hamilto-
nian can be modified to remove the infinite self-induced
velocity of a vortex filament. In Sec. IV we present
Hamilton’s variational principle. The three appendixes
contain most of the lengthy algebraic calculations.

A. Review of Hamiltonian formulations
for point-vortex and free surface motion

It has been known since the last century that the mo-
tion of point vortices in a two-dimensional ideal fluid,
either unbounded or with rigid boundaries, is governed
by Hamilton’s canonical equations of motion, where the
Hamiltonian is given by the “excess energy” of the vor-
tex system and the canonical variables are the z and y
positions of the vortices [12]. More explicitly, if the fluid
is unbounded and we have N vortices with the ath vor-
tex located at X, = (X4, Ya), then the vortex motion is
governed by

dXo dYs
dt - {XQ,H}, 7 - {Yapr} (1)

with the Hamiltonian H, given by

1850



48 HAMILTONIAN FORMULATION FOR THE MOTION OF . .. 1851

1
sz_Z;Z > Talpln|Xa — Xg, (2)
a f(#a)

where I',, is the circulation of the ath vortex. The sub-
script p is for point vortex, and is used to distinguish this
Hamiltonian from others which we shall encounter later.

The Poisson bracket is an “almost” canonical one given
by

{Xa,Yp) = 222, 3)
@
The coordinates can be made canonical by using
vVEI'o X, instead of X, depending on the sign of T',.
There is no advantage to doing this, however, and we
shall use the vortex positions X, in what follows.

The vortex motion problem given above gives rise to
very rich and complicated behavior (for a review of which
the reader may consult Aref [13]). However, here we are
not directly concerned with this problem. We will in-
stead describe briefly the well known Hamiltonian for-
mulation for another old problem in ideal flow. Namely
the motion of an irrotational fluid bounded by a free sur-
face, under the influence of gravity. Our ultimate goal
is to combine the vortex and free surface systems. The
free surface problem in Hamiltonian form is discussed
by a number of authors, among whom are Zakharov [2],
Broer [3], Watson and West [4], Miles [5], Milder [6, 7],
West et. al. [8], Henyey et. al. [9], and Creamer et.
al. [10]. Here we consider the two-dimensional problem
to set the stage, though the three-dimensional generaliza-
tion is straightforward and will be discussed later, after
we discuss vortex filaments.

Let the position of the free surface be given by
y = ((z,t) (that the free surface may be described in
this fashion is, of course, an assumption, later we will
briefly discuss more general situations, such as break-
ing waves), then the irrotational velocity field u(x,t) =

_

[u(x,t
(=, 1)
®(x,t),
u(x,t) = (9;,0y)®(x,t) = V&(x,1). (4)

),v(x,t)] of the fluid located in the interior [y <
] can be described in terms of a velocity potential

Since the fluid is incompressible, the velocity potential
satisfies the Laplace equation

V.-u=V3®=0. (5)

Assuming that u — 0 as y —» —oo (so that we have
no motion as y — —oo) the solution to the Laplace
equation for @ is completely determined by specifying
the boundary conditions at the free surface. [However,
it should be noted that it is straightforward to extend
this analysis, and all of what follows, to the case when
one has a rigid and (in general) curved bottom and
side boundaries.] Denoting the boundary value of ® by
o(z,t) = ®(z,((z,t),t), we see that specifying ¢(z,t)
and ((z,t) determines the fluid motion at time t. We
therefore need to obtain evolution equations for ¢ and (.
These are obtained by applying the dynamic and kine-
matic boundary conditions at the free surface. That is
the evolution equation for ¢ is obtained by evaluating the
Bernoulli equation on the free surface and using the fact
the pressure on the free surface is a constant (which we
set to zero), while the evolution equation for ( is obtained
simply by using the fact that the free surface velocity is
the fluid velocity evaluated on the free surface. These
lead to the following equations of motion:

u®]?
2

- gCa

be = us(uj — uie) —

(6)

Ct = 'U,; - ui(ﬂ:v

where the x and t subscripts denote partial differentiation
and u® is the fluid velocity evaluated on the free surface,

lls((l,‘,t) = (u‘{(w,t),u§(a:,t)) = u(:v, C(zvt)’t) = (V‘I))(a:, C(z,t),t), (7)

and g is the acceleration due to gravity. Thus even
though the equations of motion (6) involve only quanti-
ties evaluated on the free surface, evaluation of the right-
hand sides of the evolution equations for ¢ and ¢ actually
does require the solutions of the Laplace equation for &.
Therein lies the main difficulty in calculating numerical
solutions of Egs. (6).

About 25 years ago, Zakharov [2] discovered that the
evolution equations (6) actually describe a canonical-
Hamiltonian system with ¢ and ¢ being the canonical
coordinate and momentum, respectively, and the Hamil-
tonian being the energy of the system. That is Egs. (6)
can be written

Ct - {CaH}a d)t = {¢?H}7 (8)
with
oo ¢ oo
H:/ / @dydm%—/ gTCzd:r, (9)

[
where the first integral (which is over the bulk of the
fluid) is the kinetic energy, and the second integral is the
gravitational potential energy. The Poisson bracket is
the canonical bracket given by

{¢(2),¢(2")} = o(z — ). (10)

We now make a couple of remarks. First, the kinetic
energy term in the Hamiltonian can also be written as
an integral over the surface by an application of Green'’s
theorem. However this “bulk form” of the kinetic en-
ergy has the advantage that its physical meaning is clear
and also it brings out the fact that the Hamiltonian is a
rather complicated functional of the canonical variables,
that is it requires the solution of the Laplace equation
for ®, with the canonical variables coming in through
the boundary condition ®|,—¢ = ¢. The demonstration
that Hamilton’s equations (8) are equivalent to the equa-
tions of motion (6) is therefore not an altogether triv-
ial exercise. However, we leave this calculation to the
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next section where we generalize the problem to the case
where the interior flow is not altogether irrotational but
includes isolated point vortices. The irrotational problem
discussed by Zakharov then follows as a special case.

II. FREE SURFACE MOTION
IN TWO DIMENSIONS WITH POINT VORTICES
IN THE INTERIOR

Now we imagine that as above, we have unbounded
fluid motion, except for a free surface at y = {(z,t), but
instead of irrotational motion in the interior we have N
point vortices located at (X, Y,), a = 1,...,N. At
any later time, the fluid configuration will again consist
of a free surface and N point vortices. Therefore, we
expect that the above fluid configuration will again be
a canonical-Hamiltonian system. As a good first guess
we expect that the combination of the canonical coordi-
nates for the vortex and free surface problems discussed
above will constitute the canonical coordinates for the
combined problem of interest here. This guess turns out
to be basically correct, except that the status of one of
the proposed canonical variables, namely the boundary
value of the velocity potential on the free surface, ¢(z,t),
is now ambiguous. This is so because there are two can-
didates for velocity potential in this problem, namely the
velocity potential in the absence of the vortices, and the
one with the vortices included. Now the latter quantity
is certainly multiple valued, since even though the flow
is potential everywhere in the interior (except at the lo-
cation of the vortices), the finite circulation around each
vortex means that the velocity potential must change by
27" as one makes a closed loop around the vortex with
circulation I". However it turns out that it is the surface
value of this “total” velocity potential which is the canon-
ical momentum conjugate to surface elevation ((z,t); a
fact which we verify explicitly below. The multiple val-
uedness of the potential can be removed by drawing an
imaginary line from the vortex position to a boundary
which we take to be at y = —oo. With this prescription
the potential is single-valued everywhere and there is no
jump in the potential along the free surface. Green’s
theorem has to be appropriately modified to take into
account the new imaginary boundary.

A. The equations of motion

We now write down the equations of motion for our
free surface plus point-vortex system. As before, let ¢
be the elevation of the free surface, u the fluid velocity
in the bulk, u® the fluid velocity evaluated at the free
surface, and (X4, Y,) the position of the ath vortex with
circulation I',. We now establish the following notation:

th ( - (y“ Ya),m _Xa)
2w |x — X2 ’ (11)

U(x,t) = > U(x,t), (12)

U*(x,t) =

v (x,t) = u(x,t) — U*(x,t), (13)
v(x,t) = u(x,t) — U(x,t). (14)

Thus U is the velocity field induced by a point vortex lo-
cated at X with strength ', in an unbounded fluid. U is
the sum of such velocities for all of our vortices, while v*
and v are velocity fields obtained by removing the con-
tributions of a single vortex and all vortices, respectively,
from the total velocity field u. We shall use a superscript
s for any of these velocity fields evaluated on the free sur-
face, for example, v*(z,t) = v(z, (,t). Next, noting that
each of these velocity fields is irrotational away from the
vortices, we define various velocity potentials (which may
be multiple-valued), through the following relations:

u=Vo, (15)

U = Voy, (16)

U=Vg, (17)

v = VA. (18)
The subscript p on @7 and @, is for point vortex. For
these quantities we have the explicit formulas

'y — Xa
o) = o arctan (:Z_—Y;) , (19)
Fa T — Xa
‘I>P = — za: —2—7; arctan (‘:ZJ——}/:) . (20)

Thus, in general, &7, ®,, and ® are multiple-valued due
to the presence of the vortices, but A is always single-
valued since the singularities due to the vortices are ex-
plicitly excluded from it. However, it can be seen now
that as claimed previously, on the free surface y = {(z, t),
®, and ® are smooth and single-valued, so long as the
vortices are below the free surface.

Finally, we will denote the surface values of these ve-
locity potentials by lower case letters, thus ¢, ¢,, ¢y, and
A are @, @, &7, and A evaluated at (z,y) = (z,((z,1)).
With this notation we can now immediately write down
the equations of motion for our candidate canonical set

(C, ¢7 Xa7 Ya)

X«
dt =va(xa)7
u® 2
Be =yl —uice) - BT g,
o= — uiCe. (21)

The equations of motion for the vortices are simply the
statement that the vortices move with the fluid. Near
each vortex, the dominant velocity is the rotational one
induced by the vortex itself, however this velocity (which
is singular at the position of the vortex) does not influ-
ence the motion of the vortex and must be subtracted
from the total velocity. This is why we have v* rather
than u on the right-hand side of the first equation in (21).
The equations of motion for the surface variables are de-
rived in a similar manner and are identical in appearance
to the equations of motion (6) in the absence of vortices
in the interior. However the interpretation of ¢ is now
different, in that it must take into account the interior



vortices. More precisely, in order to obtain ® from ¢,
we must as before solve the Laplace equation for ® with
® = ¢ on y = (, however now we seek a different solution
of the Laplace equation, namely the one with appropriate
singularities at the positions of the vortices, so that the
resulting velocity field u = V® has circulation I', around
the ath vortex. This, of course, influences the resulting
surface velocity u® and is the mechanism by which the
vortices couple to the surface. In practice one would solve
Laplace’s equation for A = & — &, with surface value A
and A — 0 as y — oo, where, as noted above, A has no
singularities in the interior of the fluid.

For a single point vortex interacting with a free surface,
a Froude number

I\2
= 3,

can be defined where Y is the initial depth. By scaling
space and time, one can replace I', g, and Y with appro-
priate powers of F'. Then F — 0 (or g — oo) is a simple
limit in which the free surface looks like a rigid lid and
the potential A is the potential for the point together
with its image.

(22)

B. Hamiltonian structure

In this section we show that the vortex-free surface sys-
tem is Hamiltonian with respect to the following canon-
ical brackets

(€@ 8} = 8o = o), {Xa¥a) = $2 (29

/dw

It can therefore be seen immediately that Hamilton’s
equations resulting from the Poisson brackets (23) and
Hamiltonian (24),

SH = Zr

v (X%)8Y, — vS(X%)6X o]

0H 0H

Ct:w’ d)t:_(s_c‘? (27)
dXo _ 1 0H dY, _ 1 0H 28)
dt ) dt r,o0x,’

are equivalent to the free surface plus vortex Egs. (21),
given in the preceding section.

Now we discuss how the Hamiltonian (24) and its vari-
ation (26) are computed. The Hamiltonian may be ob-
tained by applying Green’s theorem to Eq. (9), taking
care that the boundary now includes branch cuts from
the positions of the vortices to ¥y = —oco. An equiv-
alent alternative approach which we describe now in-
volves introducing a regularized energy functional H. g,
parametrized by the pair (¢, R) given by

gCZ

5 (29)

HE,R:KE,R+-/ dzr=——

— o0

(65— utcapsa+ (5
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and a Hamiltonian which is the “excess energy” of the
fluid. The excess energy must be used, since the pres-
ence of the vortices makes the kinetic energy of the fluid
infinite. This infinity is due to two sources, the first be-
ing the 1/e divergence in the velocity as one approaches
within a distance € of a vortex, which results in an infinite
self-energy for each vortex. The second source is the slow
1/R dropoff in the far field velocity as R — oo, in the
case of nonzero net vorticity. Both of these divergences
are logarithmic, and may be removed in a similar manner
to the case in which one has point vortices only and no
free surface. We present below formulas for the excess en-
ergy H, which is our Hamiltonian, and its variation with
respect to the canonical variables (¢, (, X4, Yy); later we
discuss how these results are obtained. The Hamiltonian
is given by

H=Hy+} [ da{(6- 6p)lus +Us - C.(ut + U]
U 4+ CUD) Fac?),  (29)

where H, is the usual point vortex Hamiltonian given in
Eq. (2), and 9 is the stream function associated with the
point-vortex velocity evaluated on the free surface,

r

¢(m):—2§$ln|x—xa| (25)

y=((=,t)

The variation of this Hamiltonian with respect to the
canonical variables is given by

’us|2

+g¢ — ug(ug — uic, )) éc] . (26)

thus the potential energy is unchanged but the kinetic
energy is now

eR'—/d2

where we have found it convenient to define the region of
integration through the use of the Heaviside step func-
tion: #(z) = 0 for z < 0 and 6(z) = 1 for z > 0. Thus
the square of the velocity field is integrated over a region
bounded by the fluid surface above, excluding a circu-
lar region of radius € around each vortex, and a distance
less than R from the origin of the coordinate system. It
is now not difficult to show by applications of Green’s
theorem, that for large R and small € we have

Hop=Cilne+Cy;InR +H+0(e, R7Y), (31)

Mo -yor -t [T (X7 ~),

(30)

where C; and C; are constants depending on the vor-
tex circulations only, and H is the desired excess energy,
which is independent of € and R and is given in Eq. (24)
above. Note that the Hamiltonian (24) is now finite for
reasonable boundary conditions on ¢ and ¢ as £ — Zoo.
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Now because of the presence of u, in H, our Hamilto-
nian is a highly implicit function of the canonical vari-
ables, and this is the reason we introduced H.gr. The
only easy way to compute the variation § H of the Hamil-
tonian with respect to the canonical variables (which is
needed to arrive at the equations of motion) is to com-
pute §H, g to zeroth order in € and R~'. The advantage
of H, r compared to H is that it is defined by an integra-
tion over the fluid bulk, which facilitates the evaluation
of the variations. To summarize, we are using the fact
that from Eq. (31) we have 6H. g = §H + O(¢, R71), so
that 6H, g — 0H as € — 0 and R — oo. The actual com-
putation of the variation d H, g is rather technical and is
presented in Appendix A. The result of the computation
is, of course, Eq. (26), giving the variation of the excess
energy H, in terms of the canonical variables.

Finally in this section we mention that besides the en-
ergy, the £ component of the momentum is also conserved
due to the translational symmetry of the Hamiltonian in
the horizontal direction. It is a simple matter to show
that this momentum (which is the generator of transla-
tions in z) is given by

P= /dzmle(c—y) = ZFQYQ-{-/da:Cq&m.

(32)

ITII. FREE SURFACE MOTION
IN THREE DIMENSIONS
WITH VORTEX FILAMENTS IN THE INTERIOR

Next we discuss a generalization of the preceding ideas
to three-dimensional motion. Formally, free surface mo-
tion with potential flow in the interior is handled in the
same way as the two-dimensional case. That is, the fluid
energy acts as a Hamiltonian, with the free surface eleva-
tion z = {(z,y,t) and the velocity potential evaluated on
the free surface ¢(z,y,t) = ®(z,y,(,t) acting as canon-
ical variables; where @ is the velocity potential for the
interior flow as before. However, if we wish to include vor-
ticity in the interior, in a manner analogous to point vor-
tices in two dimensions, the problem becomes quite a bit
more complicated. Unfortunately there are no analogues
of “point” vortices in three dimensions, in the sense of
vortex singularities concentrated on points. A point vor-
tex in two dimensions actually corresponds to a straight
vortex filament in three dimensions, of course. There-
fore our analogue for point vortices in three-dimensional
motion will be vortex filaments which, however, must
be in general, curved. This will introduce a mathemati-
cal difficulty and a physical difficulty. The mathematical
difficulty is the fact that unlike the point-vortex problem
in two dimensions, there do not appear to be canoni-
cal variables for filament motion. In the section below
we solve this difficulty by showing that locally one can
find canonical variables for this problem. The physical
difficulty is due to the fact that an infinitely thin curved
vortex filament induces a normal velocity on itself, which
is infinite. Thus one must give the vortex filament a fi-
nite width to avoid this problem. As we shall indicate
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later, the Hamiltonian formalism is very well suited to
dealing with such procedures in a systematic manner.
Thus we will encounter many divergent quantities, and
we shall proceed with the understanding that for practi-
cal work, certain regularizations must be effected, some
of which are similar to those we performed in two di-
mensions. One regularization has to do with giving the
filaments a finite core size, in order to obtain a nondiver-
gent self-induced velocity. This regularization has been
discussed extensively, albeit in a non-Hamiltonian con-
text (see the review articles by Leonard [11], and Shariff
and Leonard [15]). If the vortex filaments have finite
length (which means that they must be closed) then the
above regularization will also make the Hamiltonian fi-
nite. It is easy to include some of these regularization
methods in our Hamiltonian framework. This issue will
be addressed in a later section.

A. Vortex filaments

In this section we discuss canonical coordinates and
Hamiltonian structure for a three-dimensional fluid with
vorticity concentrated on one-dimensional filaments, in
the absence of free surfaces. In the next section, we will
combine the canonical coordinates for free surface plus
vortex filament motion, in the spirit of the work above
on two-dimensional free surface plus point-vortex motion,
and demonstrate explicitly that the combined system is
Hamiltonian.

There are two steps in demonstrating that a system can
be put into canonical-Hamiltonian form. One must first
find canonical Poisson brackets and then one must verify
that the bracket structure gives the correct equations of
motion. Finding a correct set of Poisson brackets can
be done by intelligent guessing or by using the methods
described by Marsden and Weinstein. The first example
that we discuss is simple enough that the formalism of
Marsden and Weinstein, which is rather technical, may
be avoided. The details of a systematic derivation using
their methods are presented in Appendix B.

For simplicity, we will work on the case where one has
a single vortex filament. The generalization to several
filaments is straightforward and we shall comment on it
at the end of this section. It has already been shown
by Marsden and Weinstein [14] that vortex filament mo-
tion is Hamiltonian in the sense that the motion occurs
in a symplectic manifold, with the kinetic energy of the
system acting as Hamiltonian. This symplectic mani-
fold, which is infinite dimensional, is simply the space of
non-self-intersecting curves of given fixed topology in the
three-dimensional region occupied by the fluid. (Since,
for example, a knotted vortex filament cannot evolve into
one without knots in an inviscid fluid.) Marsden and
Weinstein provide a formula for the symplectic two form
on this manifold, and do no not discuss Poisson brackets
and canonical coordinates. It must be stressed that this
manifold of closed curves is genuinely curved and one can
only expect to provide local canonical coordinates on it.

In order to set the stage, we shall discuss one case in
which one can make a reasonable guess at the Poisson
brackets. Suppose a vortex filament of circulation I is



shaped so that one can describe it by the conditions
y=Y(), == Z(). (33)

Then each plane z =const is pierced by the filament ex-

actly once, and at each z we have a situation reminiscent

of the two-dimensional problem. We will show that these
are canonical coordinates for the problem

{¥(@),¥(a")} = {2(2), 2()} =0,
¥ (@), 2} = 2E22), (34)
J

t(z) - t(=')
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We will actually treat a somewhat more general situa-
tion, which includes the above Cartesian case, as a spe-
cial case. Of course the fact that later we will obtain the
correct equations of motion from these brackets provides
an independent confirmation of their correctness. How-
ever, for the sake of clarity we first look at this special
case in some detail. In the absence of a free surface, if
description of the filament in terms of coordinates given
in Eq. (33) is appropriate, then the Hamiltonian is given
by

2
Hp = P—/ dx dx’
8w

where t(z) = [1,Y'(z), Z'(z)] is the tangent vector (not
normalized) to the filament. The motion of the filament
is then governed by Hamilton’s canonical equations,

¥ (1) _ 8Hr
ot 6Z(z, 1)
8Z(x,t) __ SHp
= = 8Y (z,t)° (36)

A more complete derivation of the free surface plus vor-
tex filament motion given later will include the above
as a special case. For now we note that usually the fila-
ment cannot be described by the parametrization given in
Eq. (33). However, such a parametrization always works
locally, and one can divide the curve into several sections
with a different parametrization for each section.

As mentioned above we will actually treat a more gen-
eral situation. Suppose that the curve of the vortex fila-
ment can be described in the following way. Let (a,b,c)
be a fixed right-handed orthogonal coordinate system in
three-dimensional space. We shall assume that our vor-
tex filament is concentrated on a curve which is described
by the condition

(a,b,¢) = (a, B(a),C(a)). (37)

These are indeed local coordinates, since not all vortex
filaments will be describable in this fashion if (a, b, ¢) are
a given and fixed. There is no guarantee either that a fil-
ament described in this manner initially can be described
in this way at a later time. We will, for now, put these
objections aside and consider (B(a),C(a)) as local coor-
dinates for the vortex filament system. Although we have
not yet looked in detail at the situation when description
in terms of a given coordinate system breaks down, it
appears that there is no difficulty in using different lo-
cal coordinates for different segments of a filament and
changing from one set to another as the system evolves
in time. We will make a few remarks about this situation
at the end of this section.

Our goal now will be to compute the Poisson brack-
ets {B(a), B(a')}, {B(a),C(a")}, {C(a),C(a’)}. As men-
tioned above we will give only the result of this computa-
tion and the details will be left to an appendix. Let 7 be
the Jacobian determinant of the transformation from the

{e=)+ ¥ (o) - Y2 +2(2) - Z(@ )}/

(35)

[
Cartesian (z,y,z) to the curvilinear (a,b,c), evaluated
on the filament,

o(z,y,z)

7 =17(a) = det .
8(a,6,) |(a,b,0)=(u,B(a),C(a))

(38)
With this, the Poisson brackets of interest can be written
as

{B(a), B(a')} = {C(a),C(a")} =0,
(39)

(B(a),C(@)} = - 6(a — o).

Note that due to the 77! factor in {B(a),C(a’)}, these
coordinates are not necessarily canonical. However they
can be modified into canonical coordinates in some spe-
cial cases of interest which we now discuss. If the filament
is nearly straight, then we may want to use Cartesian co-
ordinates to describe it, e.g., as,

(z,y,2) = (2,Y(2), Z(z)), (40)

here 7 = 1 and we do automatically have canonical coor-
dinates
6(x — '
(@), 2@} =222, (41)

which is a natural generalization of the point-vortex Pois-
son bracket. For a vortex ring a description in terms of
cylindrical coordinates may be appropriate,

(0,2,7) = (8,2(0), R(0)), (42)

where the order of the coordinates is dictated by their
right handedness. Here 7 = R(#), therefore Z(6) and
R2%(6)/2 provide a canonical pair,

(0-90)

{200, 8202} = °U (43)

As a final example, for a filament of nearly helical shape,
we may put

(r,0,2) = (r,0(r), Z(r)), (44)

then 7 = r and we have the canonical pair (r©(r), Z(r)),
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r—r')

frow), 2y = 2

The generalization of these Poisson brackets to the
case of several filaments is straightforward. The Poisson
bracket between variables of different filaments is zero.
That is if we have N filaments described by

(@a bay €a) = (@a, Ba(@a),Calty)), a=1,...,N
(46)

(45)

then,
{Ba(aa), Ba(ap)} = {Ca(aa), Cp(ag)} = 0,

’ _ ‘Saﬁ ’
(Ba(aa), Colan)} = gl=ban —al).  (41)

It should be noted that one can use different kinds of
variables for different filaments, for instance, if we have
a ring and a nearly straight filament, we may use cylin-
drical coordinates for the first and Cartesian coordinates
for the second filament.

Finally, let us suppose that we give up the notion of
describing a filament in terms of a single coordinate sys-
tem. In this case, it appears reasonable to divide the
filament into sections such that each section can be de-
scribed in terms of a locally Cartesian pair (Y (z), Z(z))
or (X(z),Y(z)) or (Y(y),X(y)). Since the analysis giv-
ing our Poisson brackets is completely local, we will still
have canonical brackets in each section of the filament.
Therefore the only additional complication is that we
have to keep track of how each section is connected with
the adjacent pair. There must be a region around the
point of separation such that either coordinate system
could be used. As the system evolves in time, the descrip-
tion of a filament in terms of its segments may change.
While this procedure may appear complicated, it may
be no worse than more usual Lagrangian parametriza-
tions of the filament, where the same kinds of problems
will come up in another guise, if the filament becomes
stretched and twisted enough.

B. Equations of motion for free surface motion
with a vortex filament in the interior

Suppose now that we have a three-dimensional fluid
with a free surface described by

z = C((E,y,t), (48)

and with a vortex filament in the interior described as
in Eq. (37) of the preceding section. We have chosen to
have only one filament in the interior, since the case of
several filaments requires precisely the same arguments,
but increases the notational clutter. In the end we will
discuss the modifications which must be made to include
more than one filament. We will now adopt a parallel no-
tation to the first part of this paper on two-dimensional
motion. Namely we will let u, U, and v stand for to-
tal velocity, velocity induced by the filament in an un-
bounded fluid, and the irrotational difference u — U, re-
spectively. Let ®, ®¢, and A be the velocity potentials
associated with these velocities, respectively, where the
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f subscript stands for filament. As before we denote the
surface values of these potentials by lower case letters,
e.g., ¢(z,y,t) = ®(z,y,{(z,y,t),t), while surface values
of the velocities will be denoted by a superscript s, e.g.,
u’(z,y,t) = u(z,y,{(z,y,t),t). The equations of motion
for the system can then be written in the same way as be-
fore, i.e., the equations of motion for the surface variables
are obtained by using kinematic and dynamic boundary
conditions for the free surface, and the equations of mo-
tion for the vortex filaments are the statement that they
move with the fluid. Thus the equations of motion for
the surface variables can be written

u’|?
¢t = u3(u3 — uile — u3(,) — 5 9¢,

Gt =u3 —ujCe — u3(,. (49)

As in the two-dimensional case, the surface velocities are
obtained by solving Laplace’s equation for ® with ® = ¢
at z = (. The solution of the Laplace equation needed is
the one with the appropriate singularities in the interior
at the location of the filament. Some additional notation
must be introduced before we write the filament equa-
tions. We define first the triad of orthogonal vector fields
(ea;es, e.) associated with the orthogonal (a,b,c) coor-
dinates in the usual way,

Ox Ox ox
= — = — c = —— 50
€, 9a’ €p b’ € ¢’ ( )
with (z,y,2z) = x = x(a,b,c) being the Cartesian co-

ordinates expressed in terms of (a,b,c). This orthogonal
system is not normalized, however it is actually more con-
venient for our purposes to work with the non-normalized
set. The position of the vortex filament as parametrized
by a will be denoted X(a) = x(a, B(a),C(a)). The total
velocity field u can be expanded in terms of the orthog-
onal vector fields (e,, €p, €.),

u = uge, + upep + uce, (51)

where u, = u-e,/|e,|? and so on. The equations of
motion for the filament, i.e., equations for B(a,t) and
C(a,t), can be obtained from

db 0B dadB
dt Ot = dt 8a’
with a similar equation for u.. This gives the following
equations of motion for B and C:

Uup = (52)

7 = n(X(@) - 2 ua(X(@)),
oC oC
bt uc(X(a)) — %ua(x(a))- (53)

Therefore in Eqs. (49) and (53), we have a set of coupled
equations for the motion of the surface with a vortex fila-
ment in the interior. If one has N filaments in the interior
described as in Eq. (46), then the only modification to
the above equations is that the solution of the Laplace
equation for ® must take into account singularities due to
all filaments in the interior; and the pair of equations (53)
are replaced by the 2N equations which are obtained sim-
ply by giving an index « to each of a, B,C and X, for
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a=1,...,N. We reiterate that different coordinate sys-
tems can be used for each filament if needed.

C. Hamiltonian structure of the combined free
surface and filament system

In this section we will show that the combined free sur-
face and filament equations of motion (49) and (53) can
be written as a Hamiltonian system with the Hamiltonian
given by the sum of kinetic and potential energies

H=K+P-= %/d3w|u|29(4~z)+%/dwdy(z.
(54)

The Hamiltonian expressed in terms of surface variables
is given in Eq. (75) below. Poisson brackets are given by
the combination of the free surface and vortex filament

Poisson brackets,
1

5K=%/d3$|u|25C5(C—Z)+/d3xu-6u9(C—z)

{¢(z,y), é(z', yl)} =4(z — z")o(y — '),

1
{B(a),C(a')} = m&(a—a'). (55)
Note that again the kinetic energy involves an integration
over the fluid bulk while the potential energy is expressed
as an integral over the free surface. Our task now is
to compute the variation 6 H of the Hamiltonian with
respect to these variables.

Now we turn to the task of computing the variation of
the Hamiltonian with respect to the variables ({, ¢, B, C).
The potential energy is easy to deal with,

6P = g/da: dy C6C. (56)

We start the computation of the variation of the kinetic
energy in the same way as the two-dimensional case,

:%/dmdyhls'zgc +/d3$9(4_z)u. (V6A + 6U)

E5K1 + (us,

where 6 K; and 6 K5 are defined to be the first and second
terms in the right-hand side of the line above. §K; is
already in the desired form, so we proceed to compute
0K,. Now U is related to the vorticity w by the Biot-
Savart law

!
Ux) = -V x /d%' l:(_xx),]
r dx’

where the second expression, valid for a vortex filament
of circulation T, is a path integral along the filament. In
terms of our parametrization of the filament, this may
also be written

U(x) =V x ¥(x), (59)
where ¥(x) is the vector potential given by

LT, ta)
=i [ X (60)

¥ (x)

(57)

dX(a)
da

being the tangent vector along the filament. Note that
t is not necessarily a unit tangent. The dependence of
U on our variables (¢, ¢, B,C) is through X(a) (which
depends on B and C only). So starting from Eq. (59),
we have

=e, + B'(a)e, + C'(a)e, (61)

dU(x) = %V X /daI: E—_})T(a—”%JX(a)

+t(a)s (m)] (62)

Integrating by parts in the first term and using

! _ [x—X(a)] - §X(a)
’ (|X—X(a)l> T xk=X@pP (63)

in the second term, we arrive at

t(a)[x — X(a)] - 6X(a) — 6X(a)[x — X(a)] - t(a)

5U(x) = 43\7' x /da
vy

Ix — X(a)[?
_ T , 10X (a) x t(a)] x [x — X(a)]
=V [ x—X(a)P
_ £ a6X(a) % t(a)
SV /d x— X(a)P ’

(64)

now using Vx V x A = V(V - A) — V2A, and the fact that VZ|x — x'|71 = —4m§3(x — x'), we get

FU(x) = T [ dad®(x = X(@)X(a) x t(a) + 7 [dav - (2L

§X(a) x t(a)) ' (65)
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Inserting this expression into K3 in Eq. (57) above, we have

5K, =I‘/dau(X(a)) - (6X(a) x t(a)) +/d3:c9(C—z)u~V [6A+ %/daV- (5X(a) x t(a))]

= 6K21 + (usg,

where 6 K5; and § K, stand for the two terms in the line
above, respectively.

We discuss first K3;. We expand each of u(X(a)),
t(a), and 6X(a) in terms of the orthogonal set (e, €5, €.),
given in Eq. (50). In the case of u(X(a)) we just have to
evaluate the expression (51) along the filament

u(X(a)) = ua(X(a))eq + up(X(a))ep + u.(X(a))e..
(67)

The appropriate expression for the tangent vector t was
already given in Eq. (61), while for §X(a) we have

§X(a) = 53‘3—’; + 50% = 6Bey + 6Ce.. (68)

|

Ko = [ dody (s = uic, i) {(50), + - [/daV' (%ﬁ%‘l)}}

where as before the subscript or superscript s de-
notes evaluation of the expression on the free surface,
(z,y,2) = (z,y,¢). Now, in a manner analogous to the
two-dimensional case, the complicated expression occur-
ring after (§A); turns out simply to be the variation of
the velocity potential of the filament, i.e.,

r 0X(a) x t(a)
= — daV .| ——"_— .
(0%1)s = 4m [/ ¢ ( Ix—X(a)] /],
We have chosen to present the involved proof of Eq. (71)
in Appendix C, so as not to distract the reader from the
main thrust of the argument, which is now quite similar

to the two-dimensional case. In any case, with Eq. (71),
Wwe can now write

(71)

Ix — X(a)|
(66)

f
Now using the fact that along the filament we have e, -
(ep x €.) = 7, with 7 being the Jacobian determinant
along the filament given in Eq. (38), we can express § K5,
in terms of variations of our coordinates ({, ¢, B, C)

6Ky =T / da () [(ub(X(a)) - ua(X(a))%g) 5C(a)

- (welx(a) - u(X(@) 5 ) iB5(@)|. (69

It now remains to compute K>, in Eq. (66) in terms
of variations of (¢, ¢, B,C). To this end we first integrate
by parts, and use V.-u=0and u-VO(( —z2) =6(¢ —
z)(u1{, + u2(, — u3), in order to arrive at the following
expression for § K»o

(70)

§Kps = / da dy (ug — uiC, — u3C,) (66 — u3se),

(72)

where with the same reasoning as in the two-dimensional
case we have used

(6A)s + (6®5)s = (6®)s = 66 + u3dC. (73)
Now putting together Eqs. (54), (56), (57), (66), (69),
and (72), we arrive at the following expression for the

variation of the Hamiltonian (54) in terms of variations
of the coordinates ({, ¢, B,C):

SH=T / da(a) [(ub(X(a)) - ua(X(a))g—f> 6C(a) — (uc(X(a)) - ua(X(a))%) 6B(a)]

2
+ /d:c dy [(ug — 3, —uj(, )60 — (u;(ug — 3¢, —ul,) — wl® g<> ag} .

With this expression for §H, it can readily be observed
that as claimed, the Hamiltonian (54) and Poisson brack-
ets (55) lead to the free surface and vortex filament equa-
tions of motion given in Egs. (49) and (53).

D. Energy, momentum, and angular momentum

In the preceding section we computed the variation of
the vortex filament plus free surface Hamiltonian §H in
terms of our variables (B, C, (, ¢). It is desirable to have

5 (74)

[
an expression for H itself [given in Eq. (54)], in terms of
these variables. This can be accomplished by appropriate
integration by parts in (54). The result is given by

H= Ez./dada' t(e) - t(a’)

[X(a) - X(a)]
+3 [ dody[- (U7 xn) + (6~ fp)(w + U -

8w

(75)
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where 1) is the vector potential for the vortex filament ve-
locity, evaluated on the surface, i.e., ¥(z,y) = ¥(z,y, ().
Similarly ¢ is the filament velocity potential evaluated
on the free surface. An expression for the filament veloc-
ity potential is given in Eq. (C1) of Appendix C. Finally
n is the normal vector to the surface, n = (—(,,—(,,1).
Note that our Hamiltonian consists of two parts. The
first term, which is an integral over the filament, is the ap-
propriate Hamiltonian for the motion of a filament with-
out a free surface. The second term is an integral over
the free surface, which reduces to the usual irrotational
free surface Hamiltonian when the filament is absent.

In this problem in addition to the energy, the horizon-
tal components of the momentum P; and P, are con-
served due to the translational symmetry of the system
in the z and y directions. Additionally, the z component
of the angular momentum L3 is conserved, reflecting ro-
tational symmetry about the z axis. These quantities are
given by

Plz/daze(C—z)ul,
P —/d3 o -
2 — 4 (C Z)’LLz,

Ls= / Bz O(C — 2)(vus — yur). (76)

As in the case of the Hamiltonian, it is desirable
to express these in terms of our chosen coordinates
(B,C,(,¢). This is again accomplished by integration
by parts with the use of suitable integrating factors. We
present the results below

Plz/dzdy{(bm —F/daZ(a)Y'(a),
szfdzdy(¢y+F/daZ(a)X'(a),

L = %/da: dy (22 + ¥*) (¢=Cy — ¢4Ca)

_g ]da Z'(a)[X2(a) + Y2(a))].

(77)
E. Regularization

It is well known that vortex filaments have an infi-
nite self-induced velocity. A variety of ways have been
suggested for regularizing the motion (see, for exam-
ple, Leonard [11], and Sharif and Leonard [15]). Some,
but not all, regularization methods can be included in a
Hamiltonian framework. We describe two simple exam-
ples in order to give an idea of how one proceeds.

First, one can simply modify the denominator in the
first term of the Hamiltonian (75),

1X(a) - X(a')| — |X(a) - X(a') + 0?|. (78)

The cutoff o represents a “core radius.” The equations
of motion are derived as before, but now the self-induced
velocity is finite. Formally our new regularized Hamilto-
nian HE is given by

HR® = (H - Hp) + HE, (79)

where H is the old Hamiltonian, Hp is the filament part
of the old Hamiltonian, and HE is the filament Hamilto-
nian modified by the inclusion of core radius o. Written
as above we see that clearly HE leads to a finite self-
induced velocity and also that its variation d Hr needed
to obtain the regularized equations of motion can be com-
puted in a similar manner to the one used above for 6 H.
It must be noted that since our description of the fila-
ment is not the same as the usual one [11, 15], the regu-
larized equations are not identical to the usual equations
obtained by directly modifying the self-induced velocity
by addition of o2 in the denominator of the Biot-Savart
law.

In a different spirit, we have the rather drastic method
of regularization given by the local induction approxima-
tion (see Leonard [11], and references therein). This is
very easy to describe in the Hamiltonian framework. We
start with the filament Hamiltonian,

t(z) - t(z')
IX(z) - X(=)|’

and for each fixed z we suppose that the only contribu-
tion in the z’ integral comes from x’ taken in the range
z— A <z <x+ A, where A is small. Then it is easy
to show that to lowest order in A, we have

2
Hp = 1_“_(%)2/ dz [6(z)). (81)
The resulting canonical equations of motion are easily

obtained,

Y SHr _ In(A)? 8 (Z(z)
ot  6Z = 4n Oz ([t(x)[)’ (82)

with a similar equation for Z. It can readily be verified
that these are equivalent to the usual local induction ap-
proximation equations. Of course, if the parametrization
of the filament in terms of Y (z) and Z(x) fails, then sep-
arate equations will be needed for other segments of the
filament in terms of X(y) and Z(y) or X(2) and Y (2),
with equations of motion identical in form to the equa-
tion for Y (z) above.

Hp = F—2/ dz dz' (80)
F~= 8n

r

IV. VARIATIONAL PRINCIPLE

One of the advantages of a Hamiltonian formulation is
the fact that the equations of motion are derivable from
a variational principle. For a discussion of this point,
see the paper by Miles [5]. Approximate variational so-
lutions have the property that the first order error van-
ishes, which often means that the solution is a better rep-
resentation of the exact solution than would be obtained
with similar approximations on the equations of motion.
It also means the conservation laws for momentum and
angular momentum that arise because of invariances of
the Hamiltonian are still exactly conserved. The canoni-
cal form of Hamilton’s principle for the two-dimensional
fluid with point vortices is given by requiring that the
following form be stationary with respect to variations of
the canonical coordinates (X4, Ya, ¢, ¢):
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S:/dt {FZ:XQYQJF/dw%—H], (83)

where the Hamiltonian H is given in Eq. (24). An al-
ternate form, which is noncanonical, with independent
variables (X4, Yo, ¢, A), is given by

S:/dt [ Zxa-/d%Uae(c—y)

+/dz¢%—Hjl, (84)

where U is the point-vortex velocity given by Eq. (11).
It is easily verified that requiring that S be stationary
with respect to independent variations of (X4, Ya,(,A),
yields the correct equations of motion. In this form the
coupling between the surface and the point vortices is
clearly exhibited. It may well be that for practical ap-
proximate calculation schemes it is easier to work with
this latter form of the variational principle. We note that,
canonical and noncanonical variational principles can be
constructed for the three-dimensional free surface-vortex
filament problem, in a similar manner.
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APPENDIX A

In this appendix we present a derivation of Eq. (26)
for the variation of the two-dimensional point vortex plus
free surface Hamiltonian. As mentioned in the text, this
computation is carried out by calculating the variation of
the regularized Hamiltonian given in Eq. (30), to zeroth
order in €. We have

0H.p =6K.p + g/ dz (4,

— 00

(A1)

thus the main difficulty is in the computation of K. g
given by Eq. (30). In this definition of K. g, Eq. (30),
we will leave out the ©(R — |x|) factor, which has no
dynamical content and is either passively carried through

6K, = /dzm (Z(U“-SX“)—JA) u-V0¢-y) [[o(x—XP|-¢)

B

In the integrand above, the u-V operator acting on the ©
functions gives rise, by the product rule, to sums of prod-
ucts of & functions and © functions. However where the
resulting 6 functions contribute (curves on which their

all the calculations, or gives rise to terms which obviously
vanish as R — oco. Thus with the understanding that the
symbol § refers to variations with respect to the canonical
coordinates (X, (, ¢), we compute

6K p= /dzm [u due(¢—y) [[O(x—X| -

4 gl‘a[eux_x% —€)36(¢ —y)

+ Moy TTo0x - %I - e)]

We will now deal separately with each of § Ky, 6 K5, and

6K3. In order to compute § K; we note that
u-du=u-(VJsA+46U), (A3)

and

- ou~ aue
U = 5;U = za: (axa‘sx" + Y. 6Ya) .
(A4)

Next, one may use the fact that U* is a function of x— X
to replace X derivatives with x derivatives at the ex-
pense of a minus sign. Having done this, incompressibil-
ity of U* and the definition of vorticity as the curl of the
velocity field may be used to obtain

u-6U = { Tod?(x — X)[ug (x)0Yo — uz(x)6 Xa]

—u(x) - V(U 6X*)}. (A5)

In the above equation and others to follow the symbol §
is used both for variations and the Dirac delta function
[as in 6%(x — X )], however the meaning should be clear
from the context and should cause no confusion. Now
since the region of integration in the defintion of K¢ g
explicity excludes the vortices, the first term in Eq. (A5)
will not contribute to the variation, and we may thus
conclude that, effectively

u-5u=u~V<6A—Z(U°“6X°‘)>.

This relation may now be inserted into § K;, which after
an integration by parts and using V - u = 0 becomes

(A6)

(A7)

[

arguments vanish), the © functions are equal to unity
(i.e., their arguments are positive) therefore we obtain
the following rather simple expression for the result of
the differentiation:
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u-vVie-y[[elx-XP-¢ | = (uil, —uz)é
B

Therefore now d K itself splits naturally into two terms,
8K, = 6K} + §K2, with which we deal separately. First
in K}, the § function §(¢ —y) enables us to perform the
integral over y and results in

SK! = /_oo dz ((51\)8 -y (ug -axa)) (u3 —uila),
(A9)

[ed
where (0A), denotes the variation of A evaluated on the
free surface. Now we have

;(Ug.éxa)zz (3;5)8.5)(0

[23

=2 (),

= (6%5),-

(A10)
Thus
(6A)s — > (U - 6X°) =

(a3

(5®),. (A11)

Now we must relate the variation of ® evaluated on the
surface, i.e., (6®);, to variations of the surface variables
¢ and ¢. We have

6¢=6(¢>(x,<))=[sc1><a:,y>]s+(3—3) 5, (A12)

thus
(39), = 66 — ugdC. (A13)

With this we can now express K} in terms of variations
of the canonical variables, we record the result below,

5K} = / do (5¢ — ugdC) (ug —u3C,). (A1)
We now turn our attention to §K?. We have
K% = Z/ d*z <Z(U°‘ S8X%) — 5A)
B a
u-(x - X5
———§(]x — XB| —¢). (A15
o Bx =X = o). (A1)

It is evident that due to the § function in the integrand
above, that as € — 0 the integration is over circular arcs
whose perimeters are tending to zero. Therefore to zeroth
order in € (which is the contribution we are interested in),
contributions are made only from terms which become
singular as € — 0. In order to analyze this situation,
we introduce polar coordinates (r, §) centered around the
vortices by writing
z=Xg+rcosé,

y =Yg+ rsinf. (A16)

Transforming into these polar coordinates in §KZ, we
may then perform the integral over r by using the § func-
tion §(|x — XP| — €) = §(r — €), which gives

- y)+Z Ax X’ﬂ‘i e XD (% — X5 — o). (A8)
[
K2 = 52/2" do (Z(U“ - 6X ) -5A)
s 7O @
xu - (cosf,sin@). (A17)

In the expression above, note should be made of the fol-
lowing facts. First, that we now have an explicit € factor,
which came from dz dy = r dr df and the § function and
secondly, that the quantities U%, §A, and u are now eval-
uated at (Xg + ecos8,Y3 + esinf), again because of the
change in coordinates and the integration on r. Now in
the expression for § K? above, we make the decompo-
sition of the total velocity defined in Eq. (13), that is
u = UP 4 vA. But in these coordinates we have

r
UP(Xg + €cosf,Yg + €sinf) = Z_fi(—sinﬂ,cose),
€

(A18)

which has zero dot product with (cos#,sin#) in §K?
above. Further, we make the following decomposition:

S (U= 6X2) =UP . 6XP + Y (U= 5X9).
a a (#8)
(A19)

Now we note that A, the sum on (U .J§X*) with 8
excluded from the sum, and v#, are by construction non-
singular as € — 0. Therefore we may write

27
JKf :52/ do Uﬁ-5xﬁvﬁ-(coso,sinﬂ)—i-o(f)-

(A20)

Finally using the explicit expression (A18) for UP, and
the fact that correct to order ¢ we have vP(Xg +
ecos0,Ys + esinf) = vP(Xg,Ys), we may carry out ex-
plicitly the integral over 6 in K2, in order to arrive at
the following expression for the variation in terms of the
canonical variables:

SK} =3 Tg[vf (XP)sYs — vy (XP)5Xg] + Oe)
B
(A21)

This concludes our calculation of §K; = §Ki + §K2.
Our next step in computing 6K, g is to compute §K,
[see Eq. (A2)]. This variation is quite simple, we use

80(¢ —y) = 0(¢ — y) ¢, to arrive at

oo 8|2
Kz:/ do —|“2| sC.

This leaves K3 to complete the computation of K, g.
This computation is quite similar to the one carried out
for §KZ above in that one uses polar coordinates centered
around the vortices to pick up the zeroth order term in
€ for the variation. Indeed, using

(A22)
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s[Je(x—X| ¢

x — XB).85X8
=_Z£M5(|x_xﬁ|_e),

A23)
— X7 (
5 X=X

and introducing polar coordinates as before, we arrive at

27 2
SK3 = "EZ/ de %(cos&sin&) - 6XA, (A24)
B 0

where as before, u above is evaluated at (Xg+e€cos 6, Yg+
esin@). Up to now the expression for § K3 is exact. How-
ever, we need only the zeroth order behavior in €, so as
before make the decomposition in Eq. (13), giving

[u|? = |UP? + 2UP . vP 4 |vP |2 (A25)

The term in |v?|? is nonsingular as € — 0, so it is of
il

SH = 3 Talof (X)6%a — 0§ (X)5Xal + } [ do

APPENDIX B: COMPUTATION
OF THE VORTEX FILAMENT
POISSON BRACKETS

In this appendix we provide a derivation of the Pois-
son brackets for vortex filaments in terms of curvilinear
coordinates (a, b, c) as given in Eq. (39) of the text. The
derivation is given using the formula provided by Mars-
den and Weinstein [14] for the relevant symplectic two
form as described in the text. A symplectic two form
is a bilinear, antisymmetric, nondegenerate, and closed
(for a discussion of the meaning of these terms, see, for
instance, Schutz [16]) functional of a pair of vectors tan-
gent to the symplectic manifold at a given point. In
the case of vortex filaments, the meaning of these tan-
gent vectors is intuitively clear. Tangent vectors always
signify infinitesimal displacements relating nearby points
on a manifold. One moves from one vortex filament to
a nearby one along a vector field defined along the fil-
ament, and normal to the filament. One uses normal
vector fields, since a given displacement defines a unique
normal vector field and vice versa. Let n and m be two
such normal vector fields, then Marsden and Weinstein
provide the following formula for €2, the appropriate sym-

plectic two form for three-dimensional vortex dynamics
defined by

Q(n,m) = /dsm w- (n xm), (B1)

where w is the vorticity. Of course since the vorticity
is concentrated along the filament, one needs to provide

the vector fields n and m only along the filament, which
is their domain of definition. Before we proceed to Pois-
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order ¢ and we ignore it. Now making use of the ex-
pression (A18) for UP, we see that the term in |UP|?
is actually of order ee~2 = e~ !. However it integrates
to zero, as it must. This leaves the cross term, which
gives the only zeroth order contribution. Again we re-
place vP(Xg + ecos 0, Yg + esin 0) with v#(X#), which is
correct to order €. The resulting trigonometric integrals
are then performed to yield

§Ks = %Y Tp[vf (XP)8Ys — v5 (XP)5X 4] + O(e).
B
(A26)

We can now put together Egs. (A1), (A2), (A14), (A21),
(A22), (A26), in order to write an expression for 6 H, g
valid to zeroth order in . However, as argued above, this
expression will be ezact for the variation of H, the actual

Hamiltonian for this problem, given in Eq. (24). So the
string of equations above yield
8 8 |l1‘s |Z 8 8 s
(ug —ui(;)d¢ + — T 9¢ —u(uy —uil,) ) 8¢ -
(A27)

son brackets, we will realize the formula above for the
symplectic two form more concretely in the (a, b, c) coor-
dinates. Let (eq, €p,€e.) be the triad of orthogonal vector
fields associated with the orthogonal (a,b,c) as defined
in Eq. (50). The vorticity of the filament can then be
written,

I't(a)
b,c) = ———
w(a'7 7C) J(a,b, C)
where T is the circulation due to the filament, t the tan-
gent vector along the filament as given in Eq. (61), and
J the Jacobian determinant of the transformation from
(z,y,2) to (a,b,c),

9(z,y,2)
(a,b,c)’

(b — B(a))é(c— C(a)), (B2)

J = det (B3)
This expression for the vorticity can be seen to be cor-
rect, first because it vanishes off the filament, second it
has the correct direction, and third it yields the proper
circulation. Indeed, consider a surface S that intersects
the filament once, then we may parametrize this surface
by the (b,¢) coordinates (provided S is small enough in
extent) since the surfaces of constant a are transverse to
the filament by assumption. We have

/w-dA =1"/dbch_1t'(eb X ec)
s

x8(b — B(a))é(c — C(a))

=T, (B4)

since t- (e, X €.) = e, - (ep X €.) = J. Now we insert our
expression for the vorticity into the formula (B1) for the
symplectic two form. Whereupon the change of variables
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(z,y,2) — (a,b,c) with d®z = Jdadbdec, and é function
integrals over b and c yield,

Q(n,m)zl"/dat-(nxm). (B5)

It is now useful to expand n and m in terms our orthog-
onal triad,

n(a) =n'(a)e, + n*(a)ey, + n*(a)e.,

m(a) =m'(a)e, + m?(a)ep, + m>(a)e., (B6)
where orthogonality of n and m to t demands that
2Dl e, |2 3 e |2
O ®7)

with a similar expression for n!. So we may think of

the coefficients m?(a) and m3(a) as determining the nor-
mal vector field m(a). Using this, the symplectic two
form (B5) can (after some algebra) be written

2
= I‘/da it (n?*m3 — m?n?),
leal?
where 7 is the Jacobian along the filament given in
Eq. (38). Now we discuss how Poisson brackets are com-
puted using such a formula. The Poisson bracket is an
operation which given a pair of functions (here function-
als) on the symplectic manifold, yields a third such func-
tion. In terms of the symplectic two form, one has the

following formula for the Poisson bracket of functions F
and G:

{F,G}:Q(np,ng}
_l"/d r':}z (nEnd — nZn),

where ng and ng are the Hamiltonian vector fields asso-
ciated with F' and G, respectively, which themselves are
defined in terms of the symplectic two form. In the more
classical language of Hamiltonian mechanics, F would
be the Hamiltonian and its associated Hamiltonian vec-
tor field would be the vector field (8F/9p, —0F/8q). Of
course in our case we do not yet know what the ¢’s and
p’s are and we must compute ng by using the symplectic
two form directly. ng is a normal vector field on the vor-
tex filament and is obtained in the following way. Let m
be another (arbitrary) normal vector filed defined on the
filament; now displace the filament infinitesimally using
m. Let 6 F be the resulting (infinitesimal) change in
F. Then ng is the normal vector field on the filament
defined by the following requirement:

5mF=Q(nF, )

Q(n, m)

(B8)

(B9)

—I‘/da i (nEm3 — m2n3), (B10)

2
a,

|
valid for arbitrary m. The properties of  as a symplectic
two form guarantee that np exists and is unique. We
are interested in the special cases where F' is the local
functional B(a) or C(a), and for these we may readily
compute the infinitesimal changes as

dmB(a) =m?(a) — B'(a)m*(a),

6mC(a) = m3(a) — C’'(a)m*(a). (B11)

These expressions were written down by the following
reasoning. Since a is our independent variable, the in-
finitesimal changes which we have denoted by the sym-
bol 4,, are by definition taken with a fixed. The total
infinitesimal change of the coordinates (a, b, c), which we
shall denote using the symbol A,,, is by definition

Am(a,b,c) =m (B12)

For changes in B(a) and C(a) with u fixed we then have
dmB(a) = Amb — B'(a)Ama,
0mC(a) = Amec — C'(a)Ama, (B13)

so the expressions given in Egs. (B11) are indeed the re-
quired variations. Now Eq. (B7) can be used to eliminate
m?! in favor of m? and m? in Eq. (B11). This gives

émB(a) = ﬁ[|ec|2B'C'}n3 + (lea|? + |es|?B"*)m?],
Cla) = @meaﬁ + lec2C")m? + |es|2B/C'm?.
(B14)
Now writing
ng = nlBea + nf—,.eb + nj’gec,
nc =nte, + nke, + nie,., (B15)

and using Eqs. (B10) and (B14), we can read off the
coefficients n%,n%, n%,nZ, needed for the computation
of the Poisson bracket as given in Eq. (B9),

nh (@) = _____6(1:1 e a) lec|*B'C’,

nb(a)(a) = —6(1? ltli D (eal? + [esB),

& (@) = (-s-(lf—l—%(lealz + lec[?C"?),

na (@) = —6(1:1 |t|2)‘ b|?B'C". (B16)

This can now be inserted into the formula for the Poisson
bracket (B9) to yield (after some algebra) the desired
Poisson brackets

{B(a),B(a)} = {C(a),C(a")} =0,
{B(a),C(a")} = §(a—a’).

1
I'r(a) (B17)

APPENDIX C: VARIATION
OF THE VORTEX FILAMENT
VELOCITY POTENTIAL

In this appendix we will give a proof of the formula (71)
for the variation of the velocity potential (), of the
vortex filament evaluated on the free surface. We will
actually give a general formula for §®+ for the case when
X is not a point on the filament itself, which will then be
valid on the free surface, since by assumption our filament
is in the interior of the fluid.
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In chapter two of Batchelor’s fluid mechanics text [17],
one finds the following formula for the velocity potential
of the velocity field associated with a vortex filament:

2/ = 3 [alx—x)-asx), (c1)
where
ax—x) = o (C2)

and the integral in x’ is over any surface whose boundary
is the filament. If the filament extends to infinity, then
it must be “closed at infinity” in a suitable manner to
define the surface for the integration. Since this formula
for ®; involves a surface integral, it is not a priori obvious
that the variation d®; will depend on the infinitesimal
displacement 6X(a) of the boundary only. However on
physical grounds it is clear that it must be so, at least
away from the filament.

Now let (u,v) be parameters for the surface S(x’), so
that x’(u,v) is a point on the surface. Then by definition

J

§®y(x) = -%/dudv [[(5x'.vf)q] ‘A+q- (%’f’

X%— v Xau

of surface integral, Eq. (C1) can be written

ox ox'
®s(x) = —-—/dudvq(x x'(u,v))- <8u X 81))'
(C3)
Now it is useful to define
ox' Ox'
A= B0 X B (C4)
and
oz’ pz!,  Oz’; Oz
It 0% j 9Ty
Tik ou Ov v Ou’ (C5)
so that
€ijkA; = Ojk, (C6)

where €;;x, is the three-dimensional antisymmetric sym-
bol, and summation over repeated indices is understood.
We now can turn to computing 6§®(x), for ®; given by
Eq. (C3). At this stage, the symbol § refers to variations
of the surface x'(u,v). We have

ox 06x ox )] ()

where V' denotes gradient with respect to x’. The first term above is already in the form of a surface integral, so we
leave it as it is. The second term can be recognized as a surface integral by using the chain rule, to convert the (u,v)

derivatives of x’, to derivatives with respect to x’,

/ ! o6 ! ox’ o6z’
/dudv [q- ((’9;_;( X aa%— 8: X 3);)] zeijk/dudvqia—ljank

8oz,

= €ijk€Ink / dudv g;—2 A

8 I

86mJ
:(6,’[6]'" —5in5ﬂ)/dudv Q= 6 I A[

= /du dv[q (V'

Therefore we have
5% (x) = Lﬂ/[ (q- V')5x' — q (V' - 5x')
—(6x' - V')q] - dS(x'). (C8)

Now we shall use the fact that x is not on the filament,
and so the bounding surface S(x’) can be chosen such

that
V'.q=—4né(x —x') = 0. (C9)

Therefore by adding a term éx'(V’
we may recognize it as

- q) to the integrand,

5% 1 (x) /v' 6%’ x q)-dS(x’).  (C10)

Now Stokes theorem can be applied to express this as a

- §x") - (q-V)ox']-A

line integral around the filament, giving

5% 5 (x /dx (6%’ % q). (c11)

Further, parametrizing this integral using parameter a,
we get

5% ;(x) = %/ dat(a) - [§X(a) x q(x — X(a)],
(C12)
which can be also expressed
5% (x) = / daV (?__))%()T)) . (C13)

This completes the proof of formula (71).
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